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Tutorial 12

Let A = {1, · · · , n} be the set of players and ν be a characteristic form.

Null player

Player i is said to be a null player of ν if

ν(S ∪ {i}) = ν(S), for any S ⊆ A \ {i}.

Symmetric players

Two players i and j are said to be symmetric if

ν(S ∪ {i}) = ν(S ∪ {j}), for any S ⊆ A \ {i, j}.

Exercise 1 (The airport game). Building an airport will benefit n players.

For each i = 1, · · · , n, Player i requires an airport that costs ci to build.

To accommodate all the players, the airport should be built at a cost of

max1≤i≤n ci. Suppose all the costs are distinct and 0 = c0 < c1 < · · · < cn.

Take the characteristic function to be

ν(S) = −max
i∈S

ci.

For k ∈ {1, · · · , n}, let Rk = {k, k + 1, · · · , n} and define a function νk on

2A by

vk(S) =

−(ck − ck−1) if S ∩Rk 6= ∅,

0 otherwise.

(i) Show that for each k ∈ {1, · · · , n}, νk is a characteristic function.

(ii) Prove ν =
∑n

k=1 νk.

(iii) Show that for each k ∈ {1, · · · , n}, if i /∈ Rk, then Player i is a null

player of νk.
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(iv) Show that for each k ∈ {1, · · · , n}, if i, j ∈ Rk, then Player i and

Player j are symmetric players of νk.

(v) Find the Shapley values.

Solution. (i) is clear by checking the definition of characteristic function.

(ii) Let S ⊆ A. If S = ∅, then clearly ν(S) =
∑n

k=1 νk(S) = 0. If S 6= ∅, let

k0 = maxS. Then by the definition of ν, ν(S) = −ck0 . On the other hand,

note that S ∩ Rk 6= ∅ for k = 1, · · · , k0 and S ∩ Rk = ∅ for k > k0. Hence

νk(S) = −(ck − ck−1) for k = 1, · · · , k0 and νk(S) = 0 for k > k0. Hence

n∑
k=1

νk(S) =

k0∑
k=1

νk(S) =

k0∑
k=0

−(ck − ck+1) = −ck0 .

We have proved that ν(S) =
∑n

k=1 νk(S) for any S ⊆ A, that is ν =∑n
k=1 νk.

(iii) Let S ⊆ A \ {i} be arbitrary. Since i /∈ Rk, we have

(S ∪ {i}) ∩Rk = S ∩Rk,

which implies that νk(S ∪ {i}) = νk(S). That is Player i is a null player of

vk.

(iv) Let S ⊆ A \ {i, j} be arbitrary. Since i, j ∈ Rk, we have

νk(S ∪ {i}) = νk(S ∪ {j}) = −(ck − ck−1).

Hence Player i and Player j are symmetric players.

(v) For i = 1,

φ1 =
1

n!

∑
1∈S⊆A

(n−|S|)!(|S|−1)!(ν(S)−ν(S\{1})) =
(n− 1)!

n!
ν({1}) = −c1

n
.
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For i = 2, · · · , n,

φi =
1

n!

∑
i∈S⊆A

(n− |S|)!(|S| − 1)!(ν(S)− ν(S \ {i}))

=
1

n!

∑
i∈S⊆A

(n− |S|)!(|S| − 1)!

[
n∑

k=1

(νk(S)− νk(S \ {i}))

]

=
1

n!

∑
i∈S⊆A

(n− |S|)!(|S| − 1)!

[
i∑

k=1

(νk(S)− νk(S \ {i}))

]

=
1

n!

∑
S⊆A: maxS=i

(n− |S|)!(|S| − 1)!

[
i∑

k=1

(νk(S)− νk(S \ {i}))

]

= −ci
n

+
1

n!

∑
S⊆A: maxS=i,|S|≥2

(n− |S|)!(|S| − 1)!

[
i∑

k=1

(νk(S)− νk(S \ {i}))

]

= −ci
n

+
1

n!

i−1∑
j=1

∑
S⊆A: maxS=i,max (S\{i})=j

(n− |S|)!(|S| − 1)!

[
i∑

k=j+1

−(ck − ck−1)

]

= −ci
n
− 1

n!

i−1∑
j=1

(ci − cj)
∑

S⊂A: maxS=i,max (S\{i})=j

(n− |S|)!(|S| − 1)!

= −ci
n
− 1

n!

i−1∑
j=1

(ci − cj)
j+1∑
k=2

∑
S⊆A: maxS=i,max (S\{i})=j

(n− k)!(k − 1)!

= −ci
n
− 1

n!

i−1∑
j=1

(ci − cj)
j+1∑
k=2

(
j − 1

k − 2

)
(n− k)!(k − 1)!.

Exercise 2. Let

R = {(u, v) : (u− 2)2 + (v − 2)2 ≤ 4}.

Solve the Nash bargaining problem by using the following points as the status

quo point (µ, ν).

(i) (2, 2).

(ii) (0, 2).

Solution. (i) The bargaining set is shown in Figure 1. Consider g(u, v) =
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0

2

2

u

v

(2, 2)

Figure 1

0

2 u

v

(0, 2)

Figure 2

(u− 2)(v − 2). On the bargaining set, v = 2 +
√

4− (u− 2)2. Hence

g(u, v) = (u− 2)(2 +
√

4− (u− 2)2 − 2)

= (u− 2)(
√

4− (u− 2)2)

≤ 2 ( by 2ab ≤ a2 + b2).

g(u, v) = 2 if and only if u − 2 =
√

4− (u− 2)2, which implies that u =

2 +
√

2. In this case, we have v = 2 +
√

2. Hence the arbitration pair is

(2 +
√

2, 2 +
√

2).

(ii) When the status point is (0, 2), the bargaining set is shown in Figure

2. In this case, on the bargaining set
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g(u, v) = (u− 0)(v − 2) = u
√

4− (u− 2)2.

By elementary calculus, we see that g attains its maximum at (u, v) =

(3, 2 +
√

3). Hence the arbitration pair is (3, 2 +
√

3).


