Tutorial 12

Let $\mathcal{A} = \{1, \dots, n\}$ be the set of players and ν be a characteristic form.

Null player

Player i is said to be a null player of ν if

$$
\nu(S \cup \{i\}) = \nu(S), \text{ for any } S \subseteq \mathcal{A} \setminus \{i\}.
$$

Symmetric players

Two players i and j are said to be symmetric if

$$
\nu(S \cup \{i\}) = \nu(S \cup \{j\}), \text{ for any } S \subseteq \mathcal{A} \setminus \{i, j\}.
$$

Exercise 1 (The airport game). Building an airport will benefit n players. For each $i = 1, \dots, n$, Player i requires an airport that costs c_i to build. To accommodate all the players, the airport should be built at a cost of $\max_{1 \leq i \leq n} c_i$. Suppose all the costs are distinct and $0 = c_0 < c_1 < \cdots < c_n$. Take the characteristic function to be

$$
\nu(S) = -\max_{i \in S} c_i.
$$

For $k \in \{1, \dots, n\}$, let $R_k = \{k, k+1, \dots, n\}$ and define a function ν_k on $2^{\mathcal{A}}$ by

$$
v_k(S) = \begin{cases} -(c_k - c_{k-1}) & \text{if } S \cap R_k \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}
$$

(i) Show that for each $k \in \{1, \dots, n\}$, ν_k is a characteristic function.

(ii) Prove $\nu = \sum_{k=1}^n \nu_k$.

(iii) Show that for each $k \in \{1, \dots, n\}$, if $i \notin R_k$, then Player i is a null player of ν_k .

(iv) Show that for each $k \in \{1, \dots, n\}$, if $i, j \in R_k$, then Player i and Player j are symmetric players of ν_k .

(v) Find the Shapley values.

Solution. (i) is clear by checking the definition of characteristic function.

(ii) Let $S \subseteq \mathcal{A}$. If $S = \emptyset$, then clearly $\nu(S) = \sum_{k=1}^n \nu_k(S) = 0$. If $S \neq \emptyset$, let $k_0 = \max S$. Then by the definition of ν , $\nu(S) = -c_{k_0}$. On the other hand, note that $S \cap R_k \neq \emptyset$ for $k = 1, \dots, k_0$ and $S \cap R_k = \emptyset$ for $k > k_0$. Hence $\nu_k(S) = -(c_k - c_{k-1})$ for $k = 1, \dots, k_0$ and $\nu_k(S) = 0$ for $k > k_0$. Hence

$$
\sum_{k=1}^{n} \nu_k(S) = \sum_{k=1}^{k_0} \nu_k(S) = \sum_{k=0}^{k_0} -(c_k - c_{k+1}) = -c_{k_0}.
$$

We have proved that $\nu(S) = \sum_{k=1}^n \nu_k(S)$ for any $S \subseteq \mathcal{A}$, that is $\nu =$ $\sum_{k=1}^n \nu_k$.

(iii) Let $S \subseteq \mathcal{A} \setminus \{i\}$ be arbitrary. Since $i \notin R_k$, we have

$$
(S \cup \{i\}) \cap R_k = S \cap R_k,
$$

which implies that $\nu_k(S \cup \{i\}) = \nu_k(S)$. That is Player i is a null player of $v_k.$

(iv) Let $S \subseteq \mathcal{A} \setminus \{i, j\}$ be arbitrary. Since $i, j \in R_k$, we have

$$
\nu_k(S \cup \{i\}) = \nu_k(S \cup \{j\}) = -(c_k - c_{k-1}).
$$

Hence Player i and Player j are symmetric players.

(v) For $i=1$,

$$
\phi_1 = \frac{1}{n!} \sum_{1 \in S \subseteq \mathcal{A}} (n-|S|)! (|S|-1)! (\nu(S) - \nu(S \setminus \{1\})) = \frac{(n-1)!}{n!} \nu(\{1\}) = -\frac{c_1}{n}.
$$

For
$$
i = 2, \dots, n
$$
,

$$
\phi_{i} = \frac{1}{n!} \sum_{i \in S \subseteq \mathcal{A}} (n - |S|)! (|S| - 1)! (\nu(S) - \nu(S \setminus \{i\}))
$$
\n
$$
= \frac{1}{n!} \sum_{i \in S \subseteq \mathcal{A}} (n - |S|)! (|S| - 1)! \left[\sum_{k=1}^{n} (\nu_{k}(S) - \nu_{k}(S \setminus \{i\})) \right]
$$
\n
$$
= \frac{1}{n!} \sum_{i \in S \subseteq \mathcal{A}} (n - |S|)! (|S| - 1)! \left[\sum_{k=1}^{i} (\nu_{k}(S) - \nu_{k}(S \setminus \{i\})) \right]
$$
\n
$$
= \frac{1}{n!} \sum_{S \subseteq \mathcal{A}: \max S = i} (n - |S|)! (|S| - 1)! \left[\sum_{k=1}^{i} (\nu_{k}(S) - \nu_{k}(S \setminus \{i\})) \right]
$$
\n
$$
= -\frac{c_{i}}{n} + \frac{1}{n!} \sum_{S \subseteq \mathcal{A}: \max S = i, |S| \ge 2} (n - |S|)! (|S| - 1)! \left[\sum_{k=1}^{i} (\nu_{k}(S) - \nu_{k}(S \setminus \{i\})) \right]
$$
\n
$$
= -\frac{c_{i}}{n} + \frac{1}{n!} \sum_{j=1}^{i-1} \sum_{S \subseteq \mathcal{A}: \max S = i, \max(S \setminus \{i\}) = j} (n - |S|)! (|S| - 1)! \left[\sum_{k=j+1}^{i} -(c_{k} - c_{k-1}) \right]
$$
\n
$$
= -\frac{c_{i}}{n} - \frac{1}{n!} \sum_{j=1}^{i-1} (c_{i} - c_{j}) \sum_{S \subseteq \mathcal{A}: \max S = i, \max(S \setminus \{i\}) = j} (n - |S|)! (|S| - 1)!
$$
\n
$$
= -\frac{c_{i}}{n} - \frac{1}{n!} \sum_{j=1}^{i-1} (c_{i} - c_{j}) \sum_{k=2}^{j+1} \sum_{S \subseteq \mathcal{A}: \max S = i, \max(S \setminus \{i\}) = j} (n - k)! (k - 1)!
$$
\n

Exercise 2. Let

$$
\mathcal{R} = \{ (u, v) : (u - 2)^2 + (v - 2)^2 \le 4 \}.
$$

Solve the Nash bargaining problem by using the following points as the status quo point (μ, ν) .

- (i) $(2, 2)$.
- (ii) $(0, 2)$.

Solution. (i) The bargaining set is shown in Figure 1. Consider $g(u, v) =$

Figure 2

 $(u-2)(v-2)$. On the bargaining set, $v = 2 + \sqrt{4 - (u-2)^2}$. Hence

$$
g(u, v) = (u - 2)(2 + \sqrt{4 - (u - 2)^2} - 2)
$$

= $(u - 2)(\sqrt{4 - (u - 2)^2})$
 ≤ 2 (by $2ab \leq a^2 + b^2$).

 $g(u, v) = 2$ if and only if $u - 2 = \sqrt{4 - (u - 2)^2}$, which implies that $u =$ $2 + \sqrt{2}$. In this case, we have $v = 2 + \sqrt{2}$. Hence the arbitration pair is $(2+\sqrt{2},2+\sqrt{2}).$

(ii) When the status point is $(0, 2)$, the bargaining set is shown in Figure 2. In this case, on the bargaining set

$$
g(u, v) = (u - 0)(v - 2) = u\sqrt{4 - (u - 2)^2}.
$$

By elementary calculus, we see that g attains its maximum at (u, v) = $(3, 2 + \sqrt{3})$. Hence the arbitration pair is $(3, 2 + \sqrt{3})$.